杜新忠戒毒网--戒毒门户 权威媒体
联系杜新忠:13757963812 | 网站地图
戒毒专家—杜新忠记事 《中国禁毒工作》
首页 > 当前位置:>戒毒研究 > 生物学基础 > 正文
生物学基础
吗啡依赖大鼠条件性位置厌恶的建立对部分脑区内CREB和强啡肽基因表达的影响
生物学基础
2007-07-08 21:42:57 来自:李毅 郝伟 作者:精神科年会 阅读量:1

    本研究由以下基金项目资助:

    1.973项目(2003CB515403):依赖和复发神经核团确定及其递质改变。

    2.国家自然科学基金项目(30370522):吗啡依赖与复吸的神经可塑性的相关机制研究。

    精神活性物质具有明显的强化作用1-3。其中负性强化可以定义为4:当某种厌恶的刺激因某特定的行为而消失时,那么以后这种特定的行为再次出现的可能性就会增加,即结束厌恶刺激的事件会使某特定行为的概率或频度增加。物质成瘾者存在:物质依赖后的戒断→厌恶刺激→负性强化→冲动性地觅药/复吸这样一个循环。戒断所致的厌恶是这条复吸通路的“源头”,阻断复吸通路,对“源头”的生物学机制的研究十分必要。而物质戒断后的条件性位置厌恶(conditioned place aversion,CPA)是指由于戒断所致的厌恶情绪与特定的环境或信号搭配后,形成联系建立条件性反射,当条件化后的对象(conditioned subjects)再次暴露于相同或相似的环境或信号时,表现出明显的厌恶动机以及明显回避条件性刺激的行为5。CPA是衡量慢性和急性阿片依赖戒断所致的厌恶性动机的一种敏感的实验6-8,物质戒断后的CPA为研究和了解物质戒断厌恶提供了载体,被广泛地用来研究精神活性物质的负性强化特性9;10。

    CREB(cAMP response element binding protein)是一种重要的转录因子,作为第三信使,又是一种重要的信号转导分子。广泛参与神经系统中神经递质神经营养因子11;12、即刻早期基因c-fos13,前强啡肽原基因、前脑啡肽原基因14的转录调控。CREB调控靶基因的表达,不仅参与了药物依赖的异常记忆(aberrant memory)过程15,而且介导了阿片类药物依赖所致的长时程细胞内适应性变化16-19。

    内阿片肽(endogenous opioid peptides)是哺乳动物脑内的天然合成的具有阿片样活性的肽类物质。强啡肽(dynorphin)是内阿片肽的核心成员。强啡肽的前体是前强啡肽原(preprodynorphin,PPD),去除其氨基端的信号肽则称为强啡肽原(prodynorphin),再经过一系列的酶切作用后生成许多的活性片断。强啡肽是的特异kappa阿片受体激动剂,通过激活kappa受体,在物质依赖形成过程中起重要作用,侧脑室内注射强啡肽可以有效控制部分吗啡依赖的戒断症状20。

    研究提示:脑内的kappa受体系统可以影响中脑边缘系统多巴胺的释放,从而调节厌恶动机/情绪21-23;与成瘾密切相关的一些脑区内CREB表达的高低,也明显影响厌恶动机/情绪以及精神活性物质的犒赏效应24-29。物质依赖戒断后CPA建立的过程中,有厌恶动机/情绪的产生,那么特定脑区内CREB调控的强啡肽表达变化,是CPA的分子基础吗?目前尚不明了,值得探讨。

    1 材料与方法
 
    1.1 实验动物

    试验动物为雄性Sprague-Dawley(SD)大鼠,均由中南大学湘雅二医院动物试验中心提供,进入试验时的体重180-220g。试验动物于试验开始前一周,饲养于昼夜节律12/12小时(8Am-8Pm)通风良好的动物房。环境温度控制在22-24摄氏度,动物能自由饮水和进食。

    1.2 药品、试剂实验器材

    1.2.1 药品 

    盐酸吗啡(Morphine Hydrochloride):沈阳第一制药厂生产,批号040310;盐酸纳洛酮(Naloxone Hydrochloride):北京四环医药科技股份有限公司生产,批号0312102。

    1.2.2 原位杂交和免疫组化检测试剂盒及其它主要试剂

    原位杂交试剂盒:前强啡肽原和CREB原位杂交检测试剂盒均购于武汉博士德生物工程有限公司。免疫组化抗体和试剂盒:磷酸化的CREB(P-CREB)一抗为兔抗磷酸化的CREB(Upstate公司)。特异性的生物素化的二抗(羊抗兔IgG)(Vector公司);强啡肽原(prodynorphin)一抗是豚鼠抗强啡肽原(Chemicon公司),特异性的生物素化的二抗(羊抗豚鼠IgG)(Chemicon公司);ABC复合物试剂盒(Vector公司);DAB显色试剂盒(Vector公司)。

    1.2.3 实验器材

    条件性位置反射训练箱30:体积为60cm×30cm×30cm(长×宽×高),被中间的可抽动隔板(30cm×30cm),等分为两个小室。一侧:内侧各面均为黑色,底面光滑,简称为黑侧。另一侧:内侧各面均为白色,底面粗糙,简称为白侧。替代隔板(30cm×30cm):一侧底面有10cm×10cm的缺口,以便在试验鼠适应训练箱和测评位置厌恶时替代原来的隔板。实验鼠在两侧内的时间以及“可视性”的戒断症状均由自动录像系统自动记录。

    1.3 试验分组与处理

    本研究共分为3组。研究组:慢性吗啡注射+纳洛酮催瘾组(morphine + naloxone,MN),简称MN组;对照组:慢性吗啡注射+生理盐水“催瘾”组(morphine + saline,MS)和慢性生理盐水注射+纳洛酮催瘾组(saline + naloxone,SN),分别简称MS和SN组。

    慢性吗啡注射:从第1天(Day1)至第7天(Day7)的上午(共计注射6天半),每天两次(8AM;8PM),10mg/kg体重/次,腹腔注射(IP)。慢性生理盐水注射:按同期对照的原则,注射的均为生理盐水。纳洛酮催瘾注射:在慢性吗啡注射的第6天(Day6),0.3mg/kg体重,腹腔注射一次。处理因素的施加详见表1-1。

    1.4 慢性吗啡依赖纳洛酮催瘾戒断CPA的建立

    CPA行为训练大致可以分为三个阶段:条件化前期(preconditioning session)、条件化期(conditioning session)条件化后CPA测试期(test session)训练均在受声光控制的环境进行:照明40lux,排气扇白噪音(masking white noise)50分贝。

    条件化前的适应:Day4,在8AM的吗啡/生理盐水注射后两个小时(10Am),

    将实验鼠单个放入训练箱,让其自由探索黑侧和白侧,共计15分钟(900sec),以适应训练箱,同时自动记录试验鼠在黑侧和白侧的时间。

    条件化前期(Day5):同Day4的处理,并同时记录试验鼠在黑侧和白侧的时间。偏好侧的评定:Day5,实验鼠在一侧的时间大于总时间的一半(450sec)。本试验中,采用的是平衡设计的条件性位置反射训练箱(unbiased apparatus)。出现以下两种情况的试验鼠将被剔除30:Day5,在一侧的时间超过总时间的80%(720sec)者;Day4在一侧的时间超过600sec而Day5在另外一侧的时间超过600sec的试验鼠。本研究阶段共有9只试验鼠被剔除。在条件化搭配之前,实验鼠在两侧的时间无明显差异(图1-1)。

    条件化搭配期:Day6,在8AM的吗啡/生理盐水注射后两个小时(10AM),腹腔注射生理盐水(1ml/kg体重)后,将实验鼠限制在非偏好侧30分钟。4小时后(2PM),MN组和SN组腹腔注射纳洛酮(0.3mg/kg体重),MS组注射等体积的生理盐水后,将实验鼠限制在偏好侧30分钟。需要说明的是:这里我们采用的类似非平衡的方法主要目的是进一步平衡(nullify)实验鼠的自然偏好31。同时自动录像系统记录实验鼠的“可视性”的戒断症状,进行躯体戒断症状的评估。包括4项可数体征:湿狗样抖动(wet dog shakes,WDS)、直立(rearing)、躯体拉伸(stretching)、跳跃(jumping);1项不可数体征:腹泻(diarrhea)。

    CPA测评期:Day7,在8AM的吗啡/生理盐水注射后两个小时(10AM),让实验鼠在训练箱内自由探索15分钟,并自动记录试验鼠在两侧内的时间。

    1.5 原位杂交和免疫组化检测

    1.5.1 原位杂交和免疫组化标本的制备

    每组大鼠于CPA测评后90分钟,每组随机选取5只,腹腔注射戊巴比妥钠(40mg/kg体重)麻醉后,灌注、取脑、沉糖。恒冷冰冻切片机(American Optical HistoSTAT MicroTOME)-20℃下连续冠状切片,片厚30μm,参照大鼠解剖图谱,留取含腹侧被盖区(ventral tegmental area,VTA)、伏隔核壳区(shell of accumbens nucleus,AcbSH)、中脑导水管周围灰质(periaqueductal gray,PAG)、杏仁核的中央核群(central amygdaloid nuclei,CeA)、海马CA1区(field CA1 of hippocampus,CA1)、前额叶皮质(prefrontal cortex,PFC)、蓝斑(locus ceruleus,LC)等脑区的切片。

    1.5.2 原位杂交和免疫组化

    本研究原位杂交严格按照试剂盒建议的实验步骤进行,实验设对照:①杂交前切片用RNA酶处理或②杂交过程中不加探针;免疫组化均是按ABC法进行。阴性对照是以正常山羊血清取代一抗,其余步骤不变。

    1.5.3 原位杂交与免疫组化结果的观察与图像分析

    每组每只动物随机选取含有各靶区的原位杂交染色切片与免疫组织化染色切片各4张。使用Motic病理图像分析系统(厦门麦克奥迪实业集团有限公司)测量阳性神经元的平均灰度值。切片阳性区表达的强弱和与灰度值呈负相关,灰度值大则阳性表达弱,反之亦然。

    1.6 统计学处理

    吗啡依赖纳洛酮催瘾戒断的CPA分数(sec):Day7,试验鼠在纳洛酮搭配侧,又称为伴药侧(naloxone-paird compartment)的时间减去Day5在同侧的时间。可数性戒断体征评分:直接以30分钟内出现的总的次数表示;不可数戒断体征(腹泻):以30分钟内有阳性体征的实验鼠数目与观察总数的比例来表示。

    均数间的多重比较,采用方差分析(ANOVA),若存在差异,采用Levene检验进行方差一致性检验,若方差齐时,用Least-significant difference(LSD)方法,若方差不齐时用Tamhane’s T2方法。两均数之间的比较采用独立样本t检验;率的比较采用Fisher’s Exact Probability test卡方检验。当P<0.05被认为统计学上有显著性的差异。所有的统计分析均采用SPSS11.5软件包完成。

    2 结果
 
    2.1 三组大鼠CPA评定的结果

    MN组:CPA条件化后,试验鼠在伴药侧的时间(sec)较条件化前期明显减少(图1-2A、2B),MN组大鼠形成了明显的CPA。

    2.2 三组大鼠戒断体征评定结果

    三组大鼠在催瘾注射后,条件化搭配期的戒断症状比较见表1-2。MN组较对照组有明显的湿狗样抖动、跳跃和腹泻的表现,而直立和躯体拉伸三组之间均无明显差异。MN组大鼠表现出部分躯体戒断症状。

    2.3 原位杂交和免疫组化的结果

    2.3.1 各被检脑区内CREB基因的表达

    各被检脑区内CREB mRNA的表达  MN组:VTA、PFC、LC和PAG,以及AcbSH(限与MS组比较)和CA1(限与SN组比较)内明显高表达,CeA内表达无明显变化。(图1-3A)

    各被检脑区内磷酸化CREB的表达  MN组:AcbSH、VTA和LC,以及CA1和PAG(两者限与SN组比较)内明显高表达,CeA和PFC内明显低表达。(图1-3B)

    2.3.2 各被检脑区内强啡肽基因的表达

    各被检脑区内前强啡肽原mRNA的表达  MN组:AcbSH、VTA和LC内明显高表达,余被检脑区与对照组无明显变化。(图1-3C)

    各被检脑区内强啡肽原的表达  MN组:AcbSH、VTA、CeA、LC内明显高表达,而CA1和PAG(两者限与MS组比较)也呈明显的高表达;PFC内无显著性改变。(图1-3D)

    3 讨论
 
    本研究表明:慢性吗啡依赖大鼠纳洛酮催瘾注射并与条件性位置训练箱搭配一次可以形成明显的CPA,条件性刺激获得了明显的厌恶特性,试验鼠表现出明显的厌恶动机和回避行为。CPA形成过程中,脑内各被检脑区的CREB和强啡肽基因的表达均发生了不同程度的适应性变化。

    3.1 物质依赖戒断后CPA

    阿片类物质依赖的戒断症状包括躯体和情感/动机两个方面,两者有不同的神经基础,动机方面的戒断症状较躯体方面更为敏感32。CPA被认为是衡量慢性阿片依赖戒断所致的厌恶性动机状态的一种敏感的实验6;8。动物试验证据表明,在阿片依赖后拮抗剂注射催瘾建立的CPA过程中,伏隔核、杏仁核复合体的中央核群以及从延髓尾部向终纹床核投射的去甲肾上腺素能神经腹侧通路等解剖结构可能起到关键作用6;33;34。另外,物质依赖戒断后的CPA行为一旦建立,往往较难消退35,推测CPA行为的建立可能是以脑内包括情绪记忆通路在内的复杂的适应性的改变为基础36。本研究发现,慢性吗啡依赖SD大鼠予纳洛酮催瘾后与条件性位置训练箱一次搭配成功建立了CPA的动物模型。故表现出明显厌恶动机状态的试验鼠,可以作为研究“吗啡依赖戒断所致厌恶”的载体,来揭示厌恶中枢状态/行为的生物学机制,为进一步干预负性强化的用药行为提供帮助。

    3.2 CPA与CREB基因表达

    在真核生物中,遗传信息从细胞核的基因组DNA传递到基因编码的蛋白质均

    受到多层次的调控。其中基因的转录是遗传信息传递过程中的第一个具有高度选择性的环节,是基因表达调控中的最重要的环节。CREB是Montminy等人在研究生长抑素(somatostatin)基因表达与调节时发现的37,其分子质量(molecular mass)为43kd,作为重要的转录因子,它的活性能被特异的诱导因子所诱导,是一种诱导性转录因子,参与其靶基因转录效率的调控。其调节的靶基因主要在神经系统中表达,如编码神经营养因子11;12、即刻早期基因c-fos13,前强啡肽原、前脑啡肽原等的基因14。CREB调节基因转录的功能是通过磷酸化-去磷酸化作用进行调节的。CREB的磷酸化是许多信号转导通路的一个会聚点(convergent point)38;39,其第133位丝氨酸被磷酸化后(即磷酸化的CREB,P-CREB)是增加其与DNA结合力和靶基因表达所必需的40。PKA、MAPK、CaMKII、PKC等38;41;42均能直接或间接激活CREB。CREB通过调节靶基因的转录和表达,在学习、记忆17;19;43;44以及药物依赖的长时程神经适应性变化18;45等重要的神经生物学过程中具有重要作用。

    本研究发现CPA建立后,AcbSH、VTA、CA1、LC和PAG内P-CREB的表达水平明显升高,并且与CREB的mRNA表达水平基本一致;CeA和PFC两脑区表达明显降低,并且与相应的CREB mRNA表达不一致。AcbSH是泛杏仁核结构(extended amygdala)的重要组成部分46-48,也是物质成瘾的奖赏通路的核心结构49-53。AcbSH中CREB的表达增强,可以产生厌恶情绪,并降低物质的犒赏效应25-29。本研究中CPA行为建立后,AcbSH内CREB基因表达两水平一致性的升高。高表达的CREB可能通过激活下游靶基因(如:强啡肽基因)的转录,与CPA的厌恶动机形成有关。VTA同伏隔核一样也是中脑边缘系统多巴胺通路的核心结构53-56,神经纤维联系广泛,是介导物质犒赏效应57;58、渴求与复吸59以及药物敏感化60;61的重要结构基础。在CPA建立的过程中,VTA内CREB基因的转录和功能性的表达均明显增强,可能是CPA建立过程中厌恶动机的表达和/或犒赏的降低,以及其他与药物暴露相关的突触可塑性变化59等的重要分子基础。杏仁核对带有情感性色彩的事物的长期记忆的巩固有重要作用62;63,与厌恶性的学习有关:杏仁核内CREB介导的转录和蛋白合成不仅是条件性位置味觉厌恶(conditioned taste aversion,CTA)记忆的基础64,还是恐怖条件性反射(fear conditioning)长期记忆形成的分子开关(molecular switch)65。杏仁中央核(CeA)是杏仁核复合体中唯一参与泛杏仁核结构的组分47;48,对负性情感以及物质使用的动机状态有调节作用3,是吗啡依赖纳洛酮催瘾戒断CPA建立的重要结构基础33。CeA内P-CREB,不仅调节神经肽Y(neuropeptide Y,NPY)的表达,而且还介导了NPY与其他CREB的靶基因产物(如:BDNF)的相互作用,对焦虑情绪强化的酒精滥用行为起到调节作用66;67。CPA建立后,CeA的P-CREB的表达较对照组明显降低,结果有可能下调其靶基因(如:NPY)的转录,导致焦虑样行为(anxiety-like behaviors)46;68;69,易化了CPA的建立。海马不仅是学习、记忆和精神应激重要的结构基础70-72,也是物质成瘾密切相关的解剖基础73-75。CPA的建立是以厌恶的非条件刺激(US)与条件性周围环境刺激(CS)之间的联系为基础的,与情绪记忆有关36。我们发现:在CPA建立后,海马CA1的CREB基因表达受到明显的激活。这可能是海马内相应可塑性变化(如:LTP、LTD以及蛋白合成等)的分子基础76,从而介导CPA建立过程中的长期情绪记忆。额叶皮质系统是决策(decision-making)、对行为后果的预期判断(make judgments)等执行功能的结构基础77-79。病理学研究发现:物质滥用后,额叶皮质发生了明显的结构可塑性变化80-83,如:额叶体积的缩小,额叶皮质神经细胞的树突和树突棘可塑性变化等。影像学研究也提示额叶皮质与药物成瘾关系密切84,如在渴求时其明显被激活(activation),而在依赖戒断时其功能又受到明显的抑制(deactivation),提示:额叶参与了物质成瘾相关的认知、行为和情绪的变化的调节和控制85,如额叶功能降低,可以使皮质下的多巴胺系统活动增强,从而影响动机系统的功能状态,加剧成瘾者的动机敏感(incentive-sensitization)86;额叶纹状体纤维投射(frontostriatal projections)通路功能紊乱,成瘾者将出现冲动性的用药行为87。我们发现:CPA的建立后,额叶P-CREB的表达明显的降低,CREB mRNA水平明显升高。此时,额叶内CREB的靶基因的转录将受到一定的抑制,结果可能影响了额叶的正常功能,如对行为和情绪的调控,易化了CPA的建立,而CREB mRNA水平明显升高,极有可能是代偿的结果。LC和PAG是物质成瘾重要的结构基础,与躯体戒断症状表达相关88;89。本研究CPA建立过程中,试验鼠同时有一定的躯体戒断症状出现。两脑区内CREB表达一致性的增高可能与此有关,可能是戒断期间,“cAMP→PKA→CREB”通路上调的结果90。

    3.3 CPA与强啡肽基因表达

    目前已发现了十几种内阿片肽,其中有内啡肽(endorphins)、脑啡肽(enkephalins)和强啡肽(dynorphins)孤啡肽(orphanin)内吗啡肽(endormorphin)等。强啡肽于1976年被发现,具有强有力的典型阿片样作用。强啡肽的前体是前强啡肽原(preprodynorphin,PPD)其含有256个氨基酸,去除氨基端的信号肽则称为强啡肽原(prodynorphin)再经过一系列的酶切生成许多的活性强啡肽的片断。其中强啡肽A1-17、A1-8、B1-13和B1-29最为重要。目前学者公认至少存在μ(mu)、δ(delta)和κ(kappa)三种经典的阿片肽受体。1992-1993年间,这三个受体均被成功克隆。它们分别约有380个氨基酸(其中κ受体恰好为380个氨基酸)组成,是一个含7个跨膜结构G蛋白的偶联反应的受体蛋白。这些受体受配体激动后,通过与抑制性的G蛋白的偶联,抑制cAMP的形成,从而产生相应的生物学活性。强啡肽对κ受体的亲和力最大,对μ和δ受体亲和力较弱91。强啡肽通过对κ受体的激活,可以抑制中脑边缘系统、黑质、纹状体等结构内的多巴胺的释放92-94、降低精神活性物质的犒赏作用产生厌恶情绪92;95-98、使活动减少99以及阻滞精神活性物质的致敏作用100,使受试动物产生类抑郁的表现27;28,同时对位置厌恶的形成可能也起到重要作用98。有证据显示:强啡肽还与其他非靶受体,如:兴奋性氨基酸的NMDA受体101;102和多巴胺受体103等之间存在复杂的相互关系,可能是强啡肽介导药物暴露相关的可塑性改变的重要神经生化机制104。

    我们发现,成功建立CPA试验鼠的AcbSH、VTA、CeA和LC等脑区内强啡肽原的表达升高,CA1、PFC和PAG内表达变化不明显(与SN组比较),同时AcbSH、VTA和LC内的前强啡肽原mRNA表达水平也明显升高。在本研究中,AcbSH与VTA内不仅强啡肽基因两水平一致性表达增加,CREB基因表达也同时平行上调。强啡肽基因上游存在CREB结合位点,其表达受P-CREB调控14;22;27;28。同时,强啡肽通过激活κ受体,可减少中脑边缘系统内多巴胺的释放,导致厌恶动机92;95;98。据此,AcbSH和VTA内上调的CREB表达,依次上调强啡肽基因表达,使强啡肽活性片断在两脑区内浓度升高,导致厌恶的中枢状态,这可能是CPA建立的生物学基础。即,两脑区内可能存在“CREB→强啡肽→厌恶动机→CPA”通路,此通路可能是物质戒断建立CPA的基本生物学机制。另外,本研究发现CeA内强啡肽原表达增多。可能原因:抑制CPA建立过程中增强的兴奋性氨基酸神经传递105,代偿性的增加;或与强啡肽的转化率降低有关。本研究还发现CPA建立后,LC内的强啡肽表达增加,且与CREB高表达相平行。提示在CPA建立的过程中,LC内cAMP信号传导通路上调,依次使CREB磷酸化增强和强啡肽表达增加,结果高表达的强啡肽可能对试验鼠的戒断症状起到一定的抑制作用106;107。据此,在戒断情况下,LC内可能存在强啡肽介导的反馈机制,以利于生物体的自稳态。

    综上,吗啡慢性依赖大鼠纳洛酮催瘾戒断CPA建立过程中,与物质成瘾密切相关的各被检脑区,CREB和强啡肽基因表达均发生了不同程度的适应性变化。可以初步得出如下结论:1. AcbSH、VTA、CA1、CeA和PFC等是物质依赖戒断后CPA建立的重要解剖基础。2. 在AcbSH和VTA内CREB调控的强啡肽转录的上调,是CPA建立的基本生物学机制。3. AcbSH和VTA内的强啡肽水平是调节中枢情绪状态的关键因子之一。4. CREB调控的靶基因转录的变化是物质依赖戒断CPA建立的神经适应性变化的重要分子基础。

    参考文献:

    1 Tiffany ST, Conklin CA, Shiffman S, Clayton RR. What can dependence theories tell us about assessing the emergence of tobacco dependence? Addiction 2004; 99 Suppl 1: 78-86.

    2 Kenny PJ, Markou A. Neurobiology of the nicotine withdrawal syndrome. Pharmacol.Biochem.Behav. 2001; 70: 531-549.

    3 Koob GF. Alcoholism: allostasis and beyond. Alcohol Clin.Exp.Res. 2003; 27: 232-243.

    4 Wilson WJ. Negative reinforcement. Science 1991; 254: 1566-1567.

    5 Kratzer U, Schmidt WJ. Caroverine inhibits the conditioned place aversion induced by naloxone-precipitated morphine withdrawal in rats. Neurosci.Lett. 2003; 349: 91-94.

    6 Gracy KN, Dankiewicz LA, Koob GF. Opiate withdrawal-induced fos immunoreactivity in the rat extended amygdala parallels the development of conditioned place aversion. Neuropsychopharmacology 2001; 24: 152-160.

    7 Mucha RF. Is the motivational effect of opiate withdrawal reflected by common somatic indices of precipitated withdrawal? A place conditioning study in the rat. Brain Res. 1987; 418: 214-220.

    8 Azar MR, Jones BC, Schulteis G. Conditioned place aversion is a highly sensitive index of acute opioid dependence and withdrawal. Psychopharmacology (Berl) 2003; 170: 42-50.

    9 Schechter MD, Calcagnetti DJ. Continued trends in the conditioned place preference literature from 1992 to 1996, inclusive, with a cross-indexed bibliography. Neurosci.Biobehav.Rev. 1998; 22: 827-846.

    10 Stinus L, Cador M, Zorrilla EP, Koob GF. Buprenorphine and a CRF1 antagonist block the acquisition of opiate withdrawal-induced conditioned place aversion in rats. Neuropsychopharmacology 2005; 30: 90-98.

    11 Finkbeiner S. Calcium regulation of the brain-derived neurotrophic factor gene. Cell Mol.Life Sci. 2000; 57: 394-401.

    12 Otten U, Marz P, Heese K, Hock C, Kunz D, Rose-John S. Cytokines and neurotrophins interact in normal and diseased states. Ann.N.Y.Acad.Sci. 2000; 917: 322-330.

    13 Mao L, Wang JQ. Phosphorylation of cAMP response element-binding protein in cultured striatal neurons by metabotropic glutamate receptor subtype 5. J.Neurochem. 2003; 84: 233-243.

    14 Simpson JN, McGinty JF. Forskolin induces preproenkephalin and preprodynorphin mRNA in rat striatum as demonstrated by in situ hybridization histochemistry. Synapse 1995; 19: 151-159.

    15 Robbins TW, Everitt BJ. Drug addiction: bad habits add up. Nature 1999; 398: 567-570.

    16 Sakai N, Thome J, Newton SS et al. Inducible and brain region-specific CREB transgenic mice. Mol.Pharmacol. 2002; 61: 1453-1464.

    17 Pittenger C, Huang YY, Paletzki RF et al. Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 2002; 34: 447-462.

    18 Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat.Rev.Neurosci. 2001; 2: 119-128.

    19 Nagakura A, Miyake-Takagi K, Takagi N, Fukui M, Takeo S. Impairment of adenylyl cyclase and of spatial memory function after microsphere embolism in rats. J.Neurosci.Res. 2002; 68: 363-372.

    20 Takemori AE, Loh HH, Lee NM. Suppression by dynorphin A and [des-Tyr1]dynorphin A peptides of the expression of opiate withdrawal and tolerance in morphine-dependent mice. J.Pharmacol.Exp.Ther. 1993; 266: 121-124.

    21 Zanella AJ, Broom DM, Hunter JC, Mendl MT. Brain opioid receptors in relation to stereotypies, inactivity, and housing in sows. Physiol Behav. 1996; 59: 769-775.

    22 Todtenkopf MS, Marcus JF, Portoghese PS, Carlezon WA, Jr. Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats. Psychopharmacology (Berl) 2004; 172: 463-470.

    23 Funada M, Suzuki T, Narita M, Misawa M, Nagase H. Blockade of morphine reward through the activation of kappa-opioid receptors in mice. Neuropharmacology 1993; 32: 1315-1323.

    24 Carlezon WA, Jr., Thome J, Olson VG et al. Regulation of cocaine reward by CREB. Science 1998; 282: 2272-2275.

    25 Brunzell DH, Russell DS, Picciotto MR. In vivo nicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57Bl/6J mice. J.Neurochem. 2003; 84: 1431-1441.

    26 Chartoff EH, Papadopoulou M, Konradi C, Carlezon WA, Jr. Dopamine-dependent increases in phosphorylation of cAMP response element binding protein (CREB) during precipitated morphine withdrawal in primary cultures of rat striatum. J.Neurochem. 2003; 87: 107-118.

    27 Mague SD, Pliakas AM, Todtenkopf MS et al. Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J.Pharmacol.Exp.Ther. 2003; 305: 323-330.

    28 Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon WA, Jr. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J.Neurosci. 2001; 21: 7397-7403.

    29 Newton SS, Thome J, Wallace TL et al. Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J.Neurosci. 2002; 22: 10883-10890.

    30 Watanabe T, Nakagawa T, Yamamoto R, Maeda A, Minami M, Satoh M. Involvement of glutamate receptors within the central nucleus of the amygdala in naloxone-precipitated morphine withdrawal-induced conditioned place aversion in rats. Jpn.J.Pharmacol. 2002; 88: 399-406.

    31 Tzschentke TM. Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog.Neurobiol. 1998; 56: 613-672.

    32 Frenois F, Cador M, Caille S, Stinus L, Le Moine C. Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal. Eur.J.Neurosci. 2002; 16: 1377-1389.

    33 Watanabe T, Nakagawa T, Yamamoto R, Maeda A, Minami M, Satoh M. Involvement of noradrenergic system within the central nucleus of the amygdala in naloxone-precipitated morphine withdrawal-induced conditioned place aversion in rats. Psychopharmacology (Berl) 2003; 170: 80-88.

    34 Delfs JM, Zhu Y, Druhan JP, Aston-Jones G. Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature 2000; 403: 430-434.

    35 Stinus L, Caille S, Koob GF. Opiate withdrawal-induced place aversion lasts for up to 16 weeks. Psychopharmacology (Berl) 2000; 149: 115-120.

    36 McGaugh JL. Dissociating learning and performance: drug and hormone enhancement of memory storage. Brain Res.Bull. 1989; 23: 339-345.

    37 Montminy MR, Bilezikjian LM. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 1987; 328: 175-178.

    38 Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002; 35: 605-623.

    39 Mellstrom B, Naranjo JR. Mechanisms of Ca(2+)-dependent transcription. Curr.Opin.Neurobiol. 2001; 11: 312-319.

    40 Morrow AL, Ferrani-Kile K, Davis MI et al. Ethanol effects on cell signaling mechanisms. Alcohol Clin.Exp.Res. 2004; 28: 217-227.

    41 Gonzalez GA, Yamamoto KK, Fischer WH et al. A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature 1989; 337: 749-752.

    42 Deak M, Clifton AD, Lucocq LM, Alessi DR. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998; 17: 4426-4441.

    43 Hinoi E, Balcar VJ, Kuramoto N, Nakamichi N, Yoneda Y. Nuclear transcription factors in the hippocampus. Prog.Neurobiol. 2002; 68: 145-165.

    44 Nguyen PV. CREB and the enhancement of long-term memory. Trends Neurosci. 2001; 24: 314.

    45 Ahn S, Ginty DD, Linden DJ. A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 1999; 23: 559-568.

    46 Pandey SC. The gene transcription factor cyclic AMP-responsive element binding protein: role in positive and negative affective states of alcohol addiction. Pharmacol.Ther. 2004; 104: 47-58.

    47 Heimer L, Alheid GF, de Olmos JS et al. The accumbens: beyond the core-shell dichotomy. J.Neuropsychiatry Clin.Neurosci. 1997; 9: 354-381.

    48 Koob GF. Neuroadaptive mechanisms of addiction: studies on the extended amygdala. Eur.Neuropsychopharmacol. 2003; 13: 442-452.

    49 Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat.Rev.Neurosci. 2001; 2: 695-703.

    50 Rodd-Henricks ZA, McKinzie DL, Li TK, Murphy JM, McBride WJ. Cocaine is self-administered into the shell but not the core of the nucleus accumbens of Wistar rats. J.Pharmacol.Exp.Ther. 2002; 303: 1216-1226.

    51 Przewlocki R. Opioid abuse and brain gene expression. Eur.J.Pharmacol. 2004; 500: 331-349.

    52 Roitman MF, Wheeler RA, Carelli RM. Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron 2005; 45: 587-597.

    53 Walters CL, Kuo YC, Blendy JA. Differential distribution of CREB in the mesolimbic dopamine reward pathway. J.Neurochem. 2003; 87: 1237-1244.

    54 Wise RA. Neurobiology of addiction. Curr.Opin.Neurobiol. 1996; 6: 243-251.

    55 Schultz W. The Reward Signal of Midbrain Dopamine Neurons. News Physiol Sci. 1999; 14: 249-255.

    56 Riegel AC, French ED. Abused inhalants and central reward pathways: electrophysiological and behavioral studies in the rat. Ann.N.Y.Acad.Sci. 2002; 965: 281-291.

    57 Christie MJ, Bridge S, James LB, Beart PM. Excitotoxin lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area. Brain Res. 1985; 333: 169-172.

    58 Georges F, Aston-Jones G. Activation of ventral tegmental area cells by the bed nucleus of the stria terminalis: a novel excitatory amino acid input to midbrain dopamine neurons. J.Neurosci. 2002; 22: 5173-5187.

    59 Kauer JA. Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu.Rev.Physiol 2004; 66: 447-475.

    60 Vezina P, Queen AL. Induction of locomotor sensitization by amphetamine requires the activation of NMDA receptors in the rat ventral tegmental area. Psychopharmacology (Berl) 2000; 151: 184-191.

    61 Perugini M, Vezina P. Amphetamine administered to the ventral tegmental area sensitizes rats to the locomotor effects of nucleus accumbens amphetamine. J.Pharmacol.Exp.Ther. 1994; 270: 690-696.

    62 Tabert MH, Borod JC, Tang CY et al. Differential amygdala activation during emotional decision and recognition memory tasks using unpleasant words: an fMRI study. Neuropsychologia 2001; 39: 556-573.

    63 LeDoux JE. Emotion circuits in the brain. Annu.Rev.Neurosci. 2000; 23: 155-184.

    64 Josselyn SA, Kida S, Silva AJ. Inducible repression of CREB function disrupts amygdala-dependent memory. Neurobiol.Learn.Mem. 2004; 82: 159-163.

    65 Josselyn SA, Shi C, Carlezon WA, Jr., Neve RL, Nestler EJ, Davis M. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J.Neurosci. 2001; 21: 2404-2412.

    66 McClung CA, Nestler EJ. Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat.Neurosci. 2003; 6: 1208-1215.

    67 Pandey SC. Anxiety and alcohol abuse disorders: a common role for CREB and its target, the neuropeptide Y gene. Trends Pharmacol.Sci. 2003; 24: 456-460.

    68 Thorsell A, Heilig M. Diverse functions of neuropeptide Y revealed using genetically modified animals. Neuropeptides 2002; 36: 182-193.

    69 Heilig M, McLeod S, Brot M et al. Anxiolytic-like action of neuropeptide Y: mediation by Y1 receptors in amygdala, and dissociation from food intake effects. Neuropsychopharmacology 1993; 8: 357-363.

    70 Xu L, Anwyl R, Rowan MJ. Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 1997; 387: 497-500.

    71 de Quervain DJ, Roozendaal B, McGaugh JL. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 1998; 394: 787-790.

    72 Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat.Rev.Neurosci. 2002; 3: 453-462.

    73 White NM. Addictive drugs as reinforcers: multiple partial actions on memory systems. Addiction 1996; 91: 921-949.

    74 Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL. Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science 2001; 292: 1175-1178.

    75 Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 2000; 25: 515-532.

    76 Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog.Neurobiol. 2003; 71: 401-437.

    77 Balleine BW, Dickinson A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 1998; 37: 407-419.

    78 Bechara A, Damasio H, Damasio AR. Emotion, decision making and the orbitofrontal cortex. Cereb.Cortex 2000; 10: 295-307.

    79 Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science 1999; 283: 1657-1661.

    80 Franklin TR, Acton PD, Maldjian JA et al. Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol.Psychiatry 2002; 51: 134-142.

    81 Pfefferbaum A, Sullivan EV, Mathalon DH, Lim KO. Frontal lobe volume loss observed with magnetic resonance imaging in older chronic alcoholics. Alcohol Clin.Exp.Res. 1997; 21: 521-529.

    82 Liu X, Matochik JA, Cadet JL, London ED. Smaller volume of prefrontal lobe in polysubstance abusers: a magnetic resonance imaging study. Neuropsychopharmacology 1998; 18: 243-252.

    83 Robinson TE, Gorny G, Mitton E, Kolb B. Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 2001; 39: 257-266.

    84 Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am.J.Psychiatry 2002; 159: 1642-1652.

    85 Davidson RJ, Jackson DC, Kalin NH. Emotion, plasticity, context, and regulation: perspectives from affective neuroscience. Psychol.Bull. 2000; 126: 890-909.

    86 Jackson ME, Frost AS, Moghaddam B. Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens. J.Neurochem. 2001; 78: 920-923.

    87 Jentsch JD, Taylor JR. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl) 1999; 146: 373-390.

    88 Fan LW, Tien LT, Tanaka S et al. Changes in the brain kappa-opioid receptor levels of rats in withdrawal from physical dependence upon butorphanol. Neuroscience 2003; 121: 1063-1074.

    89 Koob GF, Maldonado R, Stinus L. Neural substrates of opiate withdrawal. Trends Neurosci. 1992; 15: 186-191.

    90 Valverde O, Mantamadiotis T, Torrecilla M et al. Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice. Neuropsychopharmacology 2004; 29: 1122-1133.

    91 Guerrini R, Calo' G, Rizzi A et al. Structure-activity relationships of nociceptin and related peptides: comparison with dynorphin A. Peptides 2000; 21: 923-933.

    92 Xi ZX, Fuller SA, Stein EA. Dopamine release in the nucleus accumbens during heroin self-administration is modulated by kappa opioid receptors: an in vivo fast-cyclic voltammetry study. J.Pharmacol.Exp.Ther. 1998; 284: 151-161.

    93 Zhang Y, Butelman ER, Schlussman SD, Ho A, Kreek MJ. Effect of the endogenous kappa opioid agonist dynorphin A(1-17) on cocaine-evoked increases in striatal dopamine levels and cocaine-induced place preference in C57BL/6J mice. Psychopharmacology (Berl) 2004; 172: 422-429.

    94 You ZB, Herrera-Marschitz M, Terenius L. Modulation of neurotransmitter release in the basal ganglia of the rat brain by dynorphin peptides. J.Pharmacol.Exp.Ther. 1999; 290: 1307-1315.

    95 Narita M, Kishimoto Y, Ise Y, Yajima Y, Misawa K, Suzuki T. Direct evidence for the involvement of the mesolimbic kappa-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology 2005; 30: 111-118.

    96 Spanagel R, Almeida OF, Bartl C, Shippenberg TS. Endogenous kappa-opioid systems in opiate withdrawal: role in aversion and accompanying changes in mesolimbic dopamine release. Psychopharmacology (Berl) 1994; 115: 121-127.

    97 Narita M, Ozaki S, Suzuki T. Endomorphin-induced motivational effect: differential mechanism of endomorphin-1 and endomorphin-2. Jpn.J.Pharmacol. 2002; 89: 224-228.

    98 Terashvili M, Wu HE, Leitermann RJ et al. Differential conditioned place preference responses to endomorphin-1 and endomorphin-2 microinjected into the posterior nucleus accumbens shell and ventral tegmental area in the rat. J.Pharmacol.Exp.Ther. 2004; 309: 816-824.

    99 Di Chiara G, Imperato A. Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J.Pharmacol.Exp.Ther. 1988; 244: 1067-1080.

    100 Lutfy K, Khaliq I, Carroll FI, Maidment NT. Orphanin FQ/nociceptin blocks cocaine-induced behavioral sensitization in rats. Psychopharmacology (Berl) 2002; 164: 168-176.

    101 Oz M, Woods AS, Shippenberg T, Kaminski RM. Effects of extracellular pH on the dynorphin A inhibition of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Synapse 2004; 52: 84-88.

    102 Kanemitsu Y, Hosoi M, Zhu PJ et al. Dynorphin A inhibits NMDA receptors through a pH-dependent mechanism. Mol.Cell Neurosci. 2003; 24: 525-537.

    103 Drago J, Padungchaichot P, Accili D, Fuchs S. Dopamine receptors and dopamine transporter in brain function and addictive behaviors: insights from targeted mouse mutants. Dev.Neurosci. 1998; 20: 188-203.

    104 Al Fayoumi SI, Brugos B, Arya V et al. Identification of stabilized dynorphin derivatives for suppressing tolerance in morphine-dependent rats. Pharm.Res. 2004; 21: 1450-1456.

    105 Maldonado C, Cauli O, Rodriguez-Arias M, Aguilar MA, Minarro J. Memantine presents different effects from MK-801 in motivational and physical signs of morphine withdrawal. Behav.Brain Res. 2003; 144: 25-35.

    106 Wen HL, Ho WK. Suppression of withdrawal symptoms by dynorphin in heroin addicts. Eur.J.Pharmacol. 1982; 82: 183-186.

    107 Takemori AE, Loh HH, Lee NM. Suppression by dynorphin A-(1-13) of the expression of opiate withdrawal and tolerance in mice. Eur.J.Pharmacol. 1992; 221: 223-226.

[责任编辑]杜新忠
杜新忠戒毒网--戒毒门户 权威媒体